Limits

In mathematics, a limit is the value that a function 'approaches' as the input approaches some value. Limits are essential to calculus. In formulas, the limit is usually denoted lim. This can written as:

$$
\lim _{x \rightarrow a} f(x)=L
$$

which means that the function, $f(x)$, can be made to be as close to the limit, L, as possible by making the input, x, sufficiently close to a. The above equation reads as 'the limit of f of x, as x approaches a, is L^{\prime}.

Properties of Limits

- If c is a constant, then the limit $x \rightarrow a$ is the constant, that is symbolically:

$$
\lim _{x \rightarrow a} c=c
$$

- If the function, $f(x)$ is continuous at $x=a$, then

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

- If the limits of $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist, then
- Addition property states:

$$
\lim _{x \rightarrow a}(f(x)+g(x))=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)
$$

- Subtraction property states:

$$
\lim _{x \rightarrow a}(f(x)-g(x))=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)
$$

- Scalar multiple property, if c is a constant, states:

$$
\lim _{x \rightarrow a}(c \times f(x))=c \times \lim _{x \rightarrow a} f(x)
$$

- Multiplication property states:

$$
\lim _{x \rightarrow a}(f(x) \times g(x))=\lim _{x \rightarrow a} f(x) \times \lim _{x \rightarrow a} g(x) .
$$

- Division property states, if $\lim _{x \rightarrow a} g(x) \neq 0$:

$$
\lim _{x \rightarrow a}\left(\frac{f(x)}{g(x)}\right)=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}
$$

- The Power Law states that if n is an integer, and the limit, $\lim _{x \rightarrow a} f(x)$ exists, then

$$
\lim _{x \rightarrow a}(f(x))^{n}=\left(\lim _{x \rightarrow a} f(x)\right)^{n}
$$

- The Root Law states:

$$
\lim _{x \rightarrow a}(\sqrt[n]{f(x)})=\sqrt[n]{\lim _{x \rightarrow a} f(x)}
$$

For example using the addition and scalar properties we can find the limit:

$$
\begin{array}{rll}
& \lim _{x \rightarrow 3}\left(2 x^{3}+5\right) & \\
= & \lim _{x \rightarrow 3}\left(2 x^{3}\right)+\lim _{x \rightarrow 3} 5 & \text { using the addition property, } \\
= & 2 \times \lim _{x \rightarrow 3}\left(x^{3}\right)+\lim _{x \rightarrow 3} 5 & \text { using the scalar multiplication property, } \\
=2 \times 3^{3}+5 & \begin{array}{l}
\text { using the power law and the constant } \\
\text { property, }
\end{array} \\
=59 . &
\end{array}
$$

Limits of trigonometric functions

The trigonometric functions have following important limit properties:

- $\lim _{x \rightarrow a}(\sin x)=\sin a ;$
- $\lim _{x \rightarrow a}(\cos x)=\cos a$;
- $\lim _{x \rightarrow a}(\tan x)=\tan a$;
- $\lim _{x \rightarrow a}\left(\frac{\sin x}{x}\right)=1$;
- $\lim _{x \rightarrow a}\left(\frac{1-\cos x}{x}\right)=0$.

For example,

$$
\begin{aligned}
\lim _{x \rightarrow 0}\left(\frac{1+\sin x}{1+\cos x}\right) & =\frac{\lim _{x \rightarrow 0} 1+\lim _{x \rightarrow 0} \sin x}{\lim _{x \rightarrow 0} 1+\lim _{x \rightarrow 0} \cos x} \\
& =\frac{1+\sin 0}{1+\cos 0} \\
& =\frac{1}{2}
\end{aligned}
$$

Resources

- Other QuickTips flyers;
- Online resources at Study Support;
- Make a consultation with a Mathematics Learning Advisor.

